Electronic and Structural Differences between Wurtzite and Zinc Blende InAs Nanowire Surfaces: Experiment and Theory
نویسندگان
چکیده
We determine the detailed differences in geometry and band structure between wurtzite (Wz) and zinc blende (Zb) InAs nanowire (NW) surfaces using scanning tunneling microscopy/spectroscopy and photoemission electron microscopy. By establishing unreconstructed and defect-free surface facets for both Wz and Zb, we can reliably measure differences between valence and conduction band edges, the local vacuum levels, and geometric relaxations to the few-millielectronvolt and few-picometer levels, respectively. Surface and bulk density functional theory calculations agree well with the experimental findings and are used to interpret the results, allowing us to obtain information on both surface and bulk electronic structure. We can thus exclude several previously proposed explanations for the observed differences in conductivity of Wz-Zb NW devices. Instead, fundamental structural differences at the atomic scale and nanoscale that we observed between NW surface facets can explain the device behavior.
منابع مشابه
Nanowire-Induced Wurtzite InAs Thin Film on Zinc-Blende InAs Substrate
2009 WILEY-VCH Verlag Gmb Synthesis of materials with a desired crystal structure is a major challenge in materials engineering. Single-crystal thin films grown by epitaxy typically adopt the same crystal structure as that of their substrates. Here, we report on the observation of a wurtzite InAs thin-film structure on a zinc-blende InAs substrate. Electron-backscatter diffraction (EBSD) and tr...
متن کاملAnisotropic photonic properties of III-V nanowires in the zinc-blende and wurtzite phase.
Some critical aspects of the anisotropic absorption and emission properties of quasi one-dimensional structures are reviewed in the context of III-V compound semiconductor nanowires. The unique optical and electronic properties of III-V nanowires stem from the combination of dielectric effects due to their large aspect ratio, and their specific crystallographic structure which can differ signif...
متن کاملWhy does wurtzite form in nanowires of III-V zinc blende semiconductors?
We develop a nucleation-based model to explain the formation of the wurtzite phase during the catalyzed growth of freestanding nanowires of zinc blende semiconductors. We show that in vapor-liquid-solid nanowire growth, nucleation generally occurs preferentially at the triple phase line. This entails major differences between zinc blende and wurtzite nuclei. Depending on the pertinent interface...
متن کاملInternal structure of multiphase zinc-blende wurtzite gallium nitride nanowires.
In this paper, the internal structure of novel multiphase gallium nitride nanowires in which multiple zinc-blende and wurtzite crystalline domains grow simultaneously along the entire length of the nanowire is investigated. Orientation relationships within the multiphase nanowires are identified using high-resolution transmission electron microscopy of nanowire cross-sections fabricated with a ...
متن کاملStructural and Room-Temperature Transport Properties of Zinc Blende and Wurtzite InAs Nanowires
Here, direct correlation between the microstructure of InAs nanowires (NWs) and their electronic transport behavior at room temperature is reported. Pure zinc blende (ZB) InAs NWs grown on SiO2/Si substrates are characterized by a rotational twin along their growth-direction axis while wurtzite (WZ) InAs NWs grown on InAs (111)B substrates have numerous stacking faults perpendicular to their gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014